互联网2010_241.AI 首页

字体:      护眼 关灯

上一页 目录 下一章

   241.AI (第2/2页)

文聪。”

    路舟,“你们好,面试的话再等等。门外的同学也进来等吧。”

    门外的学生一听,一窝蜂都进门坐到座位上等待。位置是不多,没座的也只能站着等。

    “师兄可以给我们讲讲之前你下发的题吗?”甄臻问道。

    随后她又补了一句,“呃,如果面试要涉及就算了。”

    路舟拿起考题看了一眼,“也行。随便讲讲应该是没什么问题。”

    “这个卷说不上多复杂。首先是先针对神经元进行设计,转变成数学运算的问题,那需要先给输入数据增加权重,再之后对结果进行一个偏置,最后则通过一个激活函数来获得一个最终值。常见的激活函数比如可以使用生物学中常用的sigmoid作为阈值函数。

    这就是个简单的搭建过程。”

    路舟停了下来,思考片刻又接着说了下去。

    “而在训练这个网络之前,我们可以用均方误差来定义loss值,确定训练之后的预测结果是否达到要求。均方误差我就不多讲了,应该都懂吧。”

    “......”

    路舟抬眼看了三人一眼,“那么接下来训练的优化就集中在了将loss值减小。具体来说就是对上述得到的loss值函数形式进行链式求导......”

    甄臻忽然就是举手,“师兄,能不能演算一遍。”

    路舟笑了笑,“哪专业的,数学没学好吧。”

    廖文秀,“也不是呢师兄,主要是研究生没选的人工智能方向,思路还没打开。”

    路舟听了也不多说,他也只得拿了笔在一张白纸上给三人演示。

    “事实上loss会包含我刚提到的权重w和偏置参数。所以我们在调整w时,loss到底是增大还是减小?这就需要我们求一个l/w的偏导数。

    这里我们直接链式求导,然后根据loss的定义去求出第一个偏导数,再根据神经元定义的h值再次求导,再配合激活函数sigmoid最后得到总的求导公式......”

    甄臻,“......”

    路舟,“ok,这方法一般被叫做反向传播。经过这个计算后,我们是可以得出对w变化时,loss函数最终的变化曲线。而对这个entity,我们接下来可以再用一个随机梯度下降sgd的优化算法来进行优化。”

    廖文秀,“......”

    路舟,“sgd主要的作用在于权重和偏置值的调整。首先我们定义一个学习率的常数,它将决定整个神经网络的训练速度。这样,我们再逐步调整权重和偏置的过程中,loss也能够不断降低。

    最后loss达到了要求,整个流程也就走完了,模型也就出来了。”

    曹文聪,“......”

    路舟见三人表情有些懵逼,感觉是有些尴尬,“额......”

    他抹了一把脸,直接唤醒了一旁的电脑,“好吧,这么说有点虚,我直接给你们写个代码样例。我就直接用python来示范吧,用numpy的模块。大概呢还是按照我们刚刚的理论基础,先定义几个需要用的函数......”

    五分钟后。

    “好了。大概就是这样。”

    三人,“......”

    这也忒快了点。

    甄臻有些胆小地又举了手,“师兄。博士和研究生差距有这么大嘛?我怎么一点听不进去......”

    路舟听了就乐了,“别。我就一本科生。陆师兄面前我可不敢造次。”

    三人,“?!”



请记住本站永久域名

地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com

加入书签 我的书架

上一页 目录 下一章