重启2007,从学霸到学阀_第52章 我!陆时羡!宝刀未老 首页

字体:      护眼 关灯

上一章 目录 下一页

   第52章 我!陆时羡!宝刀未老 (第1/2页)

    第一题是一道代数题,an是一道多项式之和,求证:当正整数n≥2时,a(n 1)<an。

    刚看见这题的时候,陆时羡还有些没有思路,于是一下子就顿在那里了。

    毕竟纯粹的代数题,非常考验人的逻辑联系思维能力。

    难道连第一道证明题都做不出来?这已经是最简单的了。

    陆时羡忽然紧张起来,如果连第一题都做不出来,绝对是对他后面题目解答的一个巨大打击。

    他轻吐一口气,慢慢迫使自己平静下来。

    越是紧张越不能着急。

    陆时羡再次审题,忽然发现自己陷入了一个误区,证明这种比大小的题目,何必将其分别代入后再比呢?

    他只需要转换一下思维方式。

    a与b比大小也可以转换成a与b比差或者a与b比商。

    如果a-b最后的结果大于零,或者a/b的结果大于1,那就可以说明a大于b.

    想到这,陆时羡的眼睛越来越亮。

    他在草稿纸上飞快地验算,对于an式,可以利用乘法分配律将n 1单独分离出来。

    再得出对任意的正整数n≥2,an-a(n 1)最后的简化式。

    最后证明简化式大于零。

    故a(n 1)<an。

    此题得证。

    将这道题解决,陆时羡长松一口气,开始看下一题。

    第二题是一道平面解析几何。

    题目大意是对勾函数和一条直线得到的两个交点,然后求交点在对勾函数上两条切线的交点轨迹是多少?

    不得不说,如果逻辑思维能力不够,光是看题目就足够让你看晕了。

    不过说起来,这种题还是陆时羡的强项,他在数学里最擅长的就是将图形转化成代数。

    无非就是求交点的坐标。

    根据给出的条件联立方程组,由题意知,该方程在(0, ∞)上有两个相异的实根x1、x2,故k≠1,且Δ(1)式=1 4(k?1)>0,两个实根之和(2)式与之积(3)式都大于零。

    由此可以得出直线的斜率k的取值范围,最后对对勾函数进行求导

    化简得到直线l1和l2的方程(4)式和(5)式

    (4)式-(5)式得xp的函数表达式(6)式

    将(2)(3)两式代入(6)式得xp=2

    (4)式 (5)式得yp的函数表达式(7)式

    将(2)(3)的组合式代入(7)式得2yp=(3?2k)xp 2,而xp=2,得yp=4?2k

    根据斜率k的取值范围2<yp<2.5

    即点p的轨迹为(2,2),(2,2.5)两点间的线段(不含端点)

    陆时羡写完这题,考试时间已经只剩下四十分钟了。

    第二道大题还真的不难,思路很简单,就是计算过程有些复杂,同时也比较费时间,光这一个题目就花了他几十分钟。

    来不及吐槽,陆时羡赶紧望向第三大题,

    设函数f(x)对所有的实数x都满足f(x 2π)=f(x)。

    求证:存在4个函数fi(x)(i=1,2,3,4)满足:



请记住本站永久域名

地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com

加入书签 我的书架

上一章 目录 下一页